Unsymmetrisch gebaute (Pd – Pd)-Zweikernkomplexe mit CO, CNR, SO₂ und $C_2(CO_2Me)_2$ als Brückenliganden

Helmut Werner **, Peter Thometzek*, Karin Zenkert*, Richard Goddard^b und Hans-Jürgen Kraus^b

Institut für Anorganische Chemie der Universität Würzburg^a, Am Hubland, D-8700 Würzburg, Max-Planck-Institut für Kohlenforschung^b, D-4330 Mülheim a.d. Ruhr

Eingegangen am 30. September 1986

Die Reaktion der Cyclopentadienyl- und Halogen-verbrückten Zweikernkomplexc (μ -C₅H₃)(μ -X)Pd₂(PEt₃)₂ (1a, b) und (μ -C₅H₅)(μ -X)Pd₂(PiPr₃)₂ (2a, b) mit CO, CNR (R = CH₃, C₆H₅, p-CH₃C₆H₄), SO₂ und C₂(CO₂Me)₂ führt nahezu quantitativ zu den Verbindungen C₃H₅(PR₃)Pd(μ -E)Pd(PR₃)X (3, 4, 6–11), in denen der Brückenligand E [CO, CNR, SO₂, C₂(CO₂Me)₂] unsymmetrisch an die beiden elektronisch ungleichen Molekülfragmente C₅H₅(PR₃)Pd und Pd(PR₃)X gebunden ist. Die Addition von E verläuft ohne Spaltung der Metall-Metall-Bindung. C₅H₅(PEt₃)-Pd(μ -CO)Pd(PEt₃)Br (3b) reagiert mit SO₂ sehr rasch zu C₅H₅(PEt₃)Pd(μ -SO₂)Pd(PEt₃)Br (9b); ein Brückenaustausch in umgekehrter Richtung ist nicht möglich. Die Struktur der Komplexe C₅H₅(PiPr₃)Pd(μ -CO)Pd(PiPr₃)Cl (4a) und 9b wird durch Röntgenstrukturanalyse bestimmt.

Zweikernkomplexe der allgemeinen Zusammensetzung $(\mu-X)(\mu-Y)Pd_2(PR_3)_2$, in denen Palladium in der Oxidationsstufe +1 vorliegt, sind im allgemeinen sehr einfach durch ,1 + 1-Addition" aus [Pd(X)(Y)] und $[Pd(PR_3)_2]$ erhältlich¹⁾. Das Zweikerngerüst ist häufig so robust, daß – vor allem für Y = C₅H₅ – relativ leicht ein Austausch des zweiten Brückenliganden X gegen eine elektronisch ähnliche Gruppierung gelingt. Auf diese Weise lassen sich selbst Heterometall-Dreikern- und -Vierkernkomplexe herstellen^{2.3)}.

Das ursprüngliche Ziel der vorliegenden Arbeit war herauszufinden, ob in den Verbindungen $(\mu$ -C₃H₅) $(\mu$ -X)-Pd₂(PR₃)₂ der Brückenligand X auch gegen eine *neutrale* Lewis-Base wie z. B. CO austauschbar ist. Eine Reaktion nach Gl. (1) würde zu kationischen CO-verbrückten Zweikernkomplexen führen, von denen bisher nur wenige Vertreter bekannt sind.

$$R_{3}^{P} - Pd \xrightarrow{Pd} - PR_{3} \xrightarrow{CO} R_{3}^{P} - Pd \xrightarrow{Pd} - PR_{3} \xrightarrow{(1)} (1)$$

Überraschenderweise verläuft jedoch die Reaktion von CO (und ebenso von Isonitrilen, SO₂ und Acetylendicarbonsäure-dimethylester) mit Verbindungen des Typs (μ -C₅H₃)(μ -X)Pd₂(PR₃)₂ völlig anders als in Gl. (1) gezeigt. Statt einer Substitution findet eine Addition statt, ohne daß dabei die Metall-Metall-Bindung gespalten wird. Es entstehen

Unsymmetrical Dinuclear (Pd – Pd) Complexes Containing CO, CNR, SO₂, and $C_2(CO_2Me)_2$ as Bridging Ligands

The reaction of the cyclopentadienyl- and halide-bridged dinuclear complexes $(\mu-C_5H_5)(\mu-X)Pd_2(PEt_3)_2$ (1a, b) and $(\mu-C_5H_5)(\mu-X)Pd_2(PiPr_3)_2$ (2a, b) with CO, CNR (R = CH₃, C₆H₅, p-CH₃C₆H₄), SO₂, and C₂(CO₂Me)₂ leads almost quantitatively to the formation of the compounds C₅H₅(PR₃)Pd(μ -E)Pd(PR₃)X (3, 4, 6–11), in which the bridging ligand E [CO, CNR, SO₂, C₂(CO₂Me)₂] is unsymmetrically linked to the two electronically different molecular fragments C₅H₅(PR₃)Pd and Pd(PR₃)X. The addition of E occurs without cleavage of the metal-metal bond. C₅H₅(PEt₃)Pd(μ -CO)Pd(PEt₃)Br (3b) reacts smoothly with SO₂ to produce C₅H₅(PEt₃)Pd(μ -SO₂)Pd(μ -CO)Pd(PEt₃)Br (9b); exchange of the bridging ligand in the reverse direction does not occur. The structure of the complexes C₅H₅(Pir₃)Pd(μ -CO)Pd(Pir₃)Cl (4a) and 9b has been determined by X-ray analysis.

neuartige, hinsichtlich ihrer Struktur und ihrer Elektronenverteilung unsymmetrische Pd-Pd-Zweikernkomplexe, über deren Charakterisierung nachfolgend berichtet wird. Eine kurze Mitteilung über einige der Ergebnisse ist bereits erschienen⁴.

Synthese und Eigenschaften der Zweikernkomplexe

Die zweifach verbrückten Zweikernverbindungen 1a, b und 2a, b reagieren mit CO in Toluol oder Pentan rasch und in hohen Ausbeuten zu den Komplexen 3a, b und 4a, b. Der Halogenid- und der Cyclopentadienyl-Ligand werden dabei aus der verbrückenden in eine endständige Position gedrängt, während gleichzeitig die eintretende CO-Gruppe eine Brückenstellung einnimmt. 3a und 3b entstehen auch bei den Umsetzungen von 1a und 1b mit einer Reihe von Carbonylmetallat-Anionen, wie z. B. $[Mn(CO)_5]^-$, [Fe- $(CO)_4H]^-$, $[Cr(CO)_5CN]^-$, $[Nb(CO)_6]^-$ und $[Rh(CO)_4]^-$, wobei über den Ablauf dieser vermutlich mehrstufigen Vorgänge keine genaueren Angaben gemacht werden können.

3a, b und 4a, b, welche als rubinrote, wenig luftempfindliche und in organischen Medien (mit Ausnahme gesättigter Kohlenwasserstoffe) gut lösliche Feststoffe isoliert werden, erweitern die noch recht kleine Palette zweikerniger Palladium(I)-Komplexe mit CO-Brückenliganden. Zu ihnen gehören die "A-frame"-Verbindungen (μ -CO)(μ -L-L)₂-Pd₂X₂ (L-L = Ph₂PCH₂PPh₂, Me₂PCH₂PMe₂, Ph₂As-CH₂AsPh₂; X⁻ = Halogenid)⁵⁻⁸, die ebenso wie 3 und 4 unsymmetrischen Moleküle (μ -CO)Pd₂Cl₂(PR₃)₃ (PR₃ = PPh₃⁹), PEt₂Ph¹⁰), das Cyclopentadienylderivat (μ -CO)₂Pd₂-(C₅Ph₅)₂¹¹ sowie die Dianionen [(μ -CO)₂Pd₂Cl₄]²⁻ und [(μ -CO)(μ -L-L)₂Pd₂Cl₄]²⁻ (L-L = Ph₂PCH₂NEt₂), die als Tetraalkylammonium-Salze isoliert wurden^{12,13}.

Die mit **2a**, **b** strukturverwandten Zweikernkomplexe (μ -C₅H₅)₂Pd₂(PiPr₃)₂¹⁴⁾ und (μ -C₅H₅)(μ -2-MeC₃H₄)Pd₂(PiPr₃)₂¹⁵⁾ reagieren ebenfalls spontan mit CO, allerdings – selbst bei – 78 °C – unter Spaltung der Pd – Pd-Bindung. Es bilden sich dabei die einkernigen Verbindungen (η^5 -C₅H₅)Pd(η^1 -C₅H₅)(PiPr₃)¹⁶⁾ und (C₅H₅)Pd(2-MeC₃H₄)(PiPr₃) (zur Strukturdynamik dieses Moleküls siehe Lit.¹⁷), die bereits früher von uns auf anderem Weg hergestellt wurden.

Der Carboxylat-verbrückte Komplex (μ -C₃H₅)(μ -O₂CtBu)-Pd₂(PiPr₃)₂ (5)^{2a)} zersetzt sich bei Einwirkung von CO. In Gegenwart von CH₂X₂ oder CHX₃ (X = Cl, Br) findet jedoch auch hier eine einheitliche Reaktion statt, die zu **4a** bzw. **4b** führt. Als reaktivstes Halogenomethan-Derivat erweist sich dabei Bromoform, das zum Teil unter Spaltung der Pd – Pd-Bindung den Einkernkomplex C₃H₃Pd(PiPr₃)-Br¹⁸) bildet.

$$\underbrace{i^{Pr}_{3}^{P} - Pd}_{i} - \underbrace{Pd}_{i} - \underbrace{Pd}_{i}$$

Gegenüber Isonitrilen, SO₂ und C₂(CO₂Me)₂ verhalten sich die Verbindungen 1 und 2 ähnlich wie gegenüber CO. Aus 2b und CNR (R = CH₃, C₆H₅, p-CH₃C₆H₄) entstehen bereits bei tiefer Temperatur in ca. 80-90 proz. Ausbeute die ziegelroten, kristallinen Komplexe 6-8, deren Eigenschaften denen der CO-verbrückten Verbindungen 3 und 4 vergleichbar sind. Der in Gl. (4) angegebene Strukturvorschlag wird durch die spektroskopischen Daten (nähere Angaben siehe letzten Abschnitt und Tab. 1 und 2) gestützt. Eine Entscheidung darüber, ob der Rest R zu dem Palladiumatom mit Br oder zu dem mit C₃H₅ als Liganden abgewinkelt ist, läßt sich jedoch nicht treffen.

 SO_2 reagiert mit **1a**, **b** in Toluol bei Raumtemperatur in wenigen Minuten praktisch quantitativ zu den Komplexen **9a** und **9b**, die sich im Aussehen nur wenig von **3a** und **3b** unterscheiden. **9a** und **9b** sind neben den "A-frame"-Verbindungen (μ -SO₂)(μ -L-L)₂Pd₂Cl₂ (L-L = Ph₂PCH₂-PPh₂, Me₂PCH₂PMe₂)^{7b,19} bisher die einzigen Pd-Pd-Zweikernkomplexe mit einem SO₂-Brückenliganden. Auch in ihnen ist das SO₂-Molekül *nur über den Schwefel* (und nicht über S *und* O) an die Metallatome koordiniert.

6:
$$R = CH_3$$
; 7: $R = C_6H_5$; 8: $R = p-CH_3C_6H_4$

$$\frac{1}{2} \cdot \underline{b} = \frac{SO_2}{2} \qquad Et_3^P - p_d = 0$$

$$y_a: X = Cl; \quad 9b: X = Br$$
(5)

Von den verwendeten Alkinen bildet nur Acetylendicarbonsäure-dimethylester mit 1b und 2b ein definiertes Produkt (10, 11). Phenyl- und Diphenylacetylen reagieren unter gleichen Bedingungen nicht mit 2b, während bei den Umsetzungen dieses Edukts mit C₂H₂ und HC₂CO₂Me eine Spaltung der Pd--Pd-Bindung [und Bildung von C₅H₅-Pd(PiPr₃)Br¹⁸] eintritt. Aktivierte Alkine wie z. B. C₂(CO₂Me)₂, deren π*-Orbitale sehr effektiv mit geeigneten Metall-d-Orbitalen überlappen können, gehen offensichtlich bevorzugt Additionsreaktionen wie in Gl. (6) gezeigt ein. Untersuchungen von Balch et al. unter Verwendung der Verbindung (μ -L-L)₂Pd₂Cl₂(L-L = Ph₂PCH₂PPh₂) stimmen mit dieser Aussage überein²⁰).

$$\underline{lb}, \underline{2b} \qquad \underbrace{\frac{C_2 X_2}{(X = CO_2 Me)}}_{Br} \qquad \underbrace{R_3^P}_{Br} \underbrace{c = c}_{Pd} \underbrace{c}_{PR_3}^{(6)}$$

$$10: R = Et; \quad 11: R = iPr$$

Die Frage, ob in den Zweikernkomplexen 10 und 11 ein Dimetallacyclobuten- oder Dimetallatetrahedran-Grundgerüst vorliegt, läßt sich an Hand der spektroskopischen Daten nicht eindeutig beantworten. Für beide Strukturtypen liegen Beispiele vor²¹⁾. Aufgrund der Tatsache, daß in den "A-frame"-Verbindungen (μ -C₂R₂)(μ -L-L)₂Pd₂Cl₂ (R = CF₃, CO₂Me, CO₂Et; L-L = Ph₂PCH₂PPh₂) die Palladium- und die Alkin-C-Atome *in einer Ebene* liegen²⁰⁾ und die dadurch mögliche quadratisch-planare Koordination der Pd(I)-Zentren auch in den Komplexen 3, 4 und 9 (siehe Röntgenstrukturanalysen) vorliegt, halten wir den in Gl. (6) formulierten Strukturvorschlag für wahrscheinlich. MO-Rechnungen weisen ebenfalls darauf hin, daß eine quadratisch-planare Umgebung der Metallatome in zweikernigen Palladium(I)-Verbindungen begünstigt ist²²⁾. Die als Substrate ebenfalls eingesetzten Verbindungen CH₂N₂, CS₂, SnCl₂ und S₈, die mit den Zweikernkomplexen $(\mu-L-L)_2Pd_2Cl_2$ $(L-L = Ph_2PCH_2PPh_2, Me_2PCH_2PMe_2)$ ähnlich wie CO, CNR, SO₂ und C₂R₂ reagieren^{6-8,19}, addieren sich nicht an die Pd – Pd-Bindung von **1b**. Als definiertes Reaktionsprodukt wird hier, selbst bei -78°C in Toluol, nur C₅H₅Pd(PEt₃)Br¹⁸ beobachtet.

Reaktivitätsstudien

Um Hinweise auf die Reaktivität der neuartigen unsymmetrisch gebauten Zweikernkomplexe $[C_5H_5(PR_3)Pd(\mu-E)Pd(PR_3)X]$ $[E = CO, CNR, SO_2, C_2(CO_2Me)_2]$ zu erhalten, wurden exemplarisch mit **3b** und **4b** einige Versuche durchgeführt.

Gegenüber TIPF₆ als Halogenid-abstrahierendes Reagenz erweist sich 4b als völlig inert. Mit AgPF₆ tritt Zersetzung, nicht jedoch die erhoffte Bildung des Kations $[(\mu-C_5H_5)(\mu-C_5H$ CO)Pd₂(P*i*Pr₃)₂] + [vgl. Gl. (1)] ein. NaC₅H₅ und TlC₅H₅ reagieren mit 4b unter Bindungsspaltung zu $(\eta^{5}-C_{5}H_{5})Pd(\eta^{1}-$ C₅H₅)(PiPr₃)¹⁶⁾ und nicht unter Austausch von Br gegen C₅H₅ zu (µ-CO)Pd₂(PiPr₃)₂(C₅H₅)₂ bzw. (nach CO-Verdrängung) zu $(\mu$ -C₅H₅)₂Pd₂(P*i*Pr₃)₂¹⁴. Der Austausch von C₅H₅ gegen Halogenid, der unter Verwendung von Me₃SiX mit den symmetrischen Zweikernverbindungen (µ-C₅H₅)₂Pd₂- $(PiPr_3)_2$ und $(\mu-C_5H_5)(\mu-2-MeC_3H_4)Pd_2(PiPr_3)_2$ leicht realisierbar ist^{2c,23}, gelingt mit 4b ebenfalls nicht. Hierbei wird nur $C_5H_5Pd(PiPr_3)Br^{18}$ gebildet. Sehr rasch und quantitativ reagiert 4b mit Na[C₅H₅Mo(CO)₃] zu dem Dreikern-Cluster $(C_5H_5)_2(CO)_3(PiPr_3)_2MOPd_2^2$. Dabei fällt auf, daß gegenüber dem stark nucleophilen Tricarbonyl(cyclopentadienyl)metallat-Anion praktisch kein Reaktivitätsunterschied zwischen 2b und 4b festzustellen ist.

Ein Brückenaustausch von CO gegen SO₂ ist sehr leicht möglich. Die Reaktion von **3b** mit Schwefeldioxid verläuft bei Raumtemperatur innerhalb weniger Minuten vollständig und ergibt quantitativ den Komplex **9b**. Eine Umsetzung in umgekehrter Richtung (von **9b** zu **3b**) gelingt unter den gleichen Bedingungen nicht.

$$3b \xleftarrow{SO_2}{CO} 9b$$
 (7)

Die bevorzugte Bildung einer SO₂- gegenüber einer CO-Brücke erscheint recht bemerkenswert und ist kürzlich auch bei Rhodium-Zweikernverbindungen, wie z. B. (μ -CO)Rh₂-(CO)₂(C₅H₅)₂²⁴⁾ und (μ -CO)(μ -Ph₂PCH₂PPh₂)Rh₂(C₅H₅)₂²⁵⁾, sowie bei einigen Platinclustern²⁶⁾ beobachtet worden.

Molekülstruktur von 4a und 9b

Die Ergebnisse der Röntgenstrukturanalysen der COund SO₂-verbrückten Komplexe **4a** und **9b** sind in Abb.1 und 2 sowie in Tab. 3–7 wiedergegeben. Beide Moleküle können als Kombination zweier unterschiedlicher Bausteine, nämlich (η^5 -C₅H₃)Pd(PiPr₃) (A) und (CO)Pd(PiPr₃)Cl (B) bzw. (SO₂)Pd(PEt₃)Br (B'), aufgefaßt werden, wobei nach der üblichen Elektronenzählweise dem Palladiumatom von A eine 18-Elektronen- und dem Palladiumatom von B bzw. B' eine 16-Elektronen-Konfiguration zukommt. Die für Pd-Pd-Zweikernverbindungen der allgemeinen Zusammensetzung (μ -X)(μ -Y)Pd₂(PR₃)₂ charakteristische, nahezu lineare P-Pd-Pd-P-Einheit¹⁾ ist in **4a** und **9b** nicht mehr vorhanden. Die Bindungswinkel P1-Pd1-Pd2 und Pd1-Pd2-P2 weichen mit ca. 150 und ca. 100-102° deutlich von 180° ab und sind auch untereinander stark verschieden (siehe Tab. 3). Die Ebenen E1 (P1, Pd1 und Pd2) und E2 (P2, Pd1 und Pd2) bilden einen Diederwinkel von ca. 73°.

Abb. 1. Perspektivische Ansicht von **4a**. Die Wasserstoffatome sind der besseren Übersichtlichkeit halber nicht gezeichnet

Abb. 2. Perspektivische Ansicht von 9b. Die Wasserstoffatome sind der besseren Übersichtlichkeit halber nicht gezeichnet

Auffallendstes Strukturmerkmal der Komplexe 4a und 9b ist die nicht symmetrische Verbrückung der beiden Palladiumatome durch den CO- bzw. SO₂-Liganden. Die Abstände Pd1-C und Pd1-S sind um 0.18 bzw. 0.12 Å kürzer als die Abstände Pd2-C und Pd2-S und reflektieren damit zugleich die unterschiedliche Elektronenkonfiguration der betreffenden Metalle. Die Bindungswinkel Pd1-C24-O [146.2(2)°] und Pd2-C24-O [129.4(2)°] weisen die CO-Gruppe als einen typisch semi-verbrückenden Carbonylligand aus²⁷⁾. Dieser ist prinzipiell dem Molekülbaustein **B** zuzuordnen, dessen Zentrum Pd1 eine verzerrt quadratisch-planare Koordinationssphäre besitzt. 4a weist eine enge strukturelle Verwandtschaft zu der kürzlich beschriebenen Palladiumverbindung Pd₂(CO)Cl₂(PEt₂Ph)₃¹⁰) und den Platinkomplexen $Pt_2(CO)X_2(PPh_3)_3$ (X = Cl^{9} , Br²⁸) auf, in denen ebenfalls ein semi-verbrückender CO-Ligand vorliegt.

Für die unsymmetrische SO₂-Brücke in **9b** gibt es nur wenig Präzedenzfälle. Mingos et al. haben in einigen SO₂verbrückten Platinclustern unterschiedliche Pt-S-Abstände gefunden²⁹, wobei allerdings nur in $(\mu$ -C₆H₃)(μ -PPh₂)(μ -SO₂)Pt₃(PPh₃)₃ eine Ungleichheit der Elektronenkonfiguration der beteiligten Metallatome diskutierbar ist. In den anderen Fällen könnten sterische Einflüsse dominieren.

Bedingt durch die unterschiedlichen Radien von Kohlenstoff und Schwefel sind die Pd-S-Abstände in 9b deutlich größer als die Pd-C-Abstände in 4a (vgl. Tab. 3). Diese Abstandszunahme führt zu einer signifikanten Verkleinerung des Pd-S-Pd-Winkels [76.5(2)° gegenüber Pd-C-Pd in **4a** von 84.3(1)^o] und zu einer Aufweitung der Pd-Pd-S-Winkel im Dreieckgerüst. Sehr ähnliche Verhältnisse liegen bei den Verbindungen (µ-SO2)- $Rh_2(CO)_2(C_5H_5)_2$ und (µ-CO) $Rh_2(CO)_2(C_5H_5)_2$ vor²⁴⁾. Für µ-SO₂-Brücken mit unterstützender Metall-Metall-Bindung ist nach Herrmann et al.²⁴⁾ ein M-S-M-Winkel von $75 \pm 3^{\circ}$ typisch, was auch für **9b** zutrifft. Der Pd-Pd-Abstand in 9b ist aufgrund des Raumbedarfs des Schwefelatoms größer als in 4a [2.747(2) gegenüber 2.675(1) Å] und erreicht den gleichen Wert wie in metallischem Palladium (2.74 Å).

Die Unsymmetrie des Pd₂S-Fragments in **9b** hat keinen Einfluß auf den O-S-O-Winkel und die S-O-Abstände; sie liegen in der gleichen Größenordnung wie bei anderen SO₂-verbrückten Zwei- und Mehrkernkomplexen^{24,29,30}.

Spektroskopische Untersuchungen

Im Gegensatz zu den Ausgangsverbindungen 1 und 2 sind in den Komplexen 3, 4 und 6–11 die Phosphanliganden nicht mehr äquivalent, so daß in den ¹H-, ¹³C- und ³¹P-NMR-Spektren jeweils zwei getrennte Signale für die entsprechenden Atomsorten beobachtet werden (siehe Tab. 1 und 2 sowie Exp. Teil). Während die Zuordnung der Signale der PCH_nCH₃-Protonen zu den unterschiedlichen Phosphanliganden mit den Phosphoratomen ¹P und ²P durch Entkopplungsexperimente gesichert ist, kann die entsprechende Angabe für die beiden Signale in den ³¹P-NMR-Spektren (siehe Exp. Teil) nur mit Vorbehalt erfolgen. Da die an ¹P gebundenen Protonen bei tieferem Feld absorbieren als die an ²P gebundenen, ist das bei tieferem Feld beobachtete ³¹P-Signal vermutlich dem Phosphoratom ¹P zuzuordnen.

Das ¹H-NMR-Spektrum von **4b** unterscheidet sich bei Raumtemperatur und -78 °C nicht, so daß dynamische Prozesse (z. B. eine Änderung der Koordination des Cyclopentadienylliganden von η^5 -C₅H₅ nach η^1 -C₅H₅) auszuschließen sind. Auch für eine (denkbare) fluktuierende Struktur der μ -Alkin-Komplexe **10** und **11** in Lösung gibt es keine Hinweise. Wie Tab. 2 zeigt, beobachtet man im ¹³C-NMR-Spektrum von **10** für die Kohlenstoffatome ¹C-⁶C des C₂(CO₂Me)₂-Liganden sechs getrennte Signale, was eindeutig gegen eine Umlagerung über einen Tetrahedran-artigen Übergangszustand und Platztausch von ¹C und ²C spricht.

Schlußbemerkung

Die vorliegende Arbeit dokumentiert nicht nur eine neue Reaktionsweise der symmetrisch aufgebauten Zweikernkomplexe (μ -X)(μ -Y)Pd₂(PR₃)₂, sondern sie zeigt auch, daß kleine Moleküle wie z. B. CO, SO₂, Isonitrile und Alkine an eine Metall-Metall-Einfachbindung addiert werden können, ohne daß als Folge davon diese Bindung bricht. Das Skelett der Ausgangsverbindung bleibt also erhalten. Vorgänge dieser Art könnten – vor allem bei einem reversiblen Verlauf – Bedeutung für die Entfernung einzelner Komponenten wie z. B. CO oder SO₂ aus Gasgemischen, die noch andere, weniger reaktive Teilchen enthalten, gewinnen.

Eine zweite Möglichkeit der Addition eines kleinen Moleküls an einen Zweikernkomplex des Typs $(\mu$ -X) $(\mu$ -Y)-Pd₂(PR₃)₂ ist ebenfalls bekannt. **2b** reagiert mit Allen zu der Verbindung {2-[$(\eta^5$ -C₅H₅)(PiPr₃)Pd]C₃H₄}Pd(PiPr₃)Br, die einen π -Allyl-Liganden mit einer Cyclopentadienyl(phosphan)palladium-Einheit als Substituenten enthält³¹). Bei dieser Umsetzung werden ebenfalls der Cyclopentadienyl- und der Bromid-Ligand aus der verbrückenden in eine endständige Position gedrängt, wobei allerdings die Pd – Pd-Bindung gespalten wird. Es existieren also offensichtlich verschiedene Reaktionskanäle, in die der aus (μ -X)(μ -Y)-Pd₂(PR₃)₂ und dem betreffenden addierten Substrat gebildete Begegnungskomplex einmünden kann, wobei die Frage nach Pd – Pd-Bindungsbruch oder -Bindungserhalt vermutlich zweitrangig ist.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die großzügige Unterstützung mit Personal- und Sachmitteln sowie den Firmen DEGUSSA und Wacker für wertvolle Chemikalienspenden. Herrn Dr. W. Buchner, Herrn Dr. D. Scheutzow und Herrn C.-P. Kneis sind wir für NMR-Messungen, Frau U. Neumann und Frau R. Schedl für die Durchführung von Elementaranalysen sehr zu Dank verbunden.

Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Stickstoff und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Ausgangsverbindungen 1^{2c_j} , $2^{23,32_j}$ und 5^{2a_j} wurden nach Literaturangaben dargestellt. Zers.-P. mit DTA.

 μ -Carbonyl-chloro (cyclopentadienyl) bis (triethylphosphan) dipalladium(1) (Pd-Pd) (3a): Durch eine Lösung von 275 mg (0.50 mmol) 1a in 5 ml Toluol wird bei Raumtemp. 5 min CO geleitet. Die tiefrote Lösung wird i. Vak. auf ca. 1 ml eingeengt, mit 10 ml Pentan versetzt und auf -30° C gekühlt. Es resultieren rubinrote Kristalle, die aus Toluol/Pentan (1:10) umkristallisiert werden. Ausb. 263 mg (91%), Zers.-P. 76°C. – IR (KBr): v(μ -CO) 1804 cm⁻¹. – ³¹P-NMR (C₆D₆): δ = 33.1 (d) und 23.3 (d), J(PP) = 14.6 Hz.

Bromo- μ -carbonyl-(cyclopentadienyl)bis(triethylphosphan)dipalladium(1)(Pd-Pd) (**3b**): Ausgehend von 297 mg (0.50 mmol) 1b analog wie für **3a** beschrieben. Rubinrote Kristalle, Ausb. 274 mg (88%), Zers.-P. 71 °C. – IR (KBr): v(μ -CO) 1804 cm⁻¹. – ³¹P-NMR (C₆D₆): δ = 33.3 (d) und 23.3 (d), J(PP) = 14.9 Hz. C₁₈H₃₅BrOP₂Pd₂ (622.2) Ber. C 34.11 H 5.67

Gef. C 34.40 H 5.80

 μ -Carbonyl-chloro(cyclopentadienyl)bis(triisopropylphosphan)dipalladium(I)(Pd-Pd) (4a): Ausgehend von 316 mg (0.50 mmol) 2a analog wie für 3a beschrieben. Rubinrote Kristalle, Ausb. 294 mg (89%), Zers.-P. 81°C. – IR (KBr): v(μ -CO) 1828 cm⁻¹. – ³¹P-NMR (C₆D₆): δ = 70.2 (d) und 51.3 (d), J(PP) = 7.4 Hz.

```
\begin{array}{c} C_{24}H_{47}ClOP_2Pd_2 \ (662.1) \\ Ber. \ C \ 43.57 \ H \ 7.16 \ Cl \ 5.35 \ O \ 2.44 \ Pd \ 32.14 \\ Gef. \ C \ 43.75 \ H \ 7.03 \ Cl \ 5.72 \ O \ 2.66 \ Pd \ 31.90 \end{array}
```

Die Darstellung von 4a gelingt auch durch Einleiten von CO in eine Lösung von 210 mg (0.30 mmol) 5 in 5 ml Toluol und 1 ml CH_2Cl_2 oder CHCl₃. Nach Entfernen der flüchtigen Bestandteile i. Hochvak. wird der Rückstand in wenig Toluol gelöst und die Lösung über Kieselgel chromatographiert. Mit Pentan wird zunächst eine farblose Fraktion und danach mit Toluol eine tiefrote Fraktion eluiert. Die Aufarbeitung der roten Fraktion erfolgt analog wie oben beschrieben. Ausb. 143 mg (72%) 4a.

Bromo- μ -carbonyl-(cyclopentadienyl)bis(triisopropylphosphan)dipalladium(I)(Pd-Pd) (4b): Ausgehend von 339 mg (0.50 mmol) 2b analog wie für 3a beschrieben. Rubinrote Kristalle, Ausb. 321 mg (91%), Zers.-P. 89°C. – IR (KBr): v(μ -CO) 1828 cm⁻¹. – ³¹P-NMR (C₆D₆): $\delta = 70.2$ (d) und 51.9 (d), J(PP) = 7.4 Hz.

C₂₄H₄₇BrOP₂Pd₂ (706.3) Ber. C 40.81 H 6.71 Pd 30.13 Gef. C 40.99 H 6.78 Pd 30.05

Die Darstellung von **4b** gelingt auch durch Einleiten von CO in eine Lösung von 210 mg (0.30 mmol) **5** in 5 ml Toluol und 1 ml CH₂Br₂. Die Aufarbeitung erfolgt analog wie für **4a** beschrieben. Ausb. 161 mg (76%) **4b**. Bei Verwendung von CHBr₃ entsteht neben **4b** (Ausb. 41%) auch C₅H₃Pd(PiPr₃)Br¹⁸, das sich säulenchromatographisch durch Eluieren mit Pentan vollständig abtrennen läßt.

Bromo (cyclopentadienyl)- μ -(methylisocyanid-C)-bis(triisopropylphosphan)dipalladium(1)(Pd-Pd) (6): Eine Lösung von 136 mg (0.20 mmol) 2b in 5 ml Toluol wird bei -78°C tropfenweise mit 11 μ l (0.20 mmol) Methylisocyanid versetzt. Nach langsamem Erwärmen auf Raumtemp. (unter Rühren) wird die Lösung i. Vak. auf ca. 1 ml eingeengt, mit 10 ml Pentan versetzt und auf -30°C gekühlt. Es resultieren ziegelrote Kristalle, die aus Toluol/Pentan (1:10) umkristallisiert werden. Ausb. 118 mg (82%), Zers.-P. 86 °C. – IR (KBr): v(CN) 1791 cm⁻¹. – ³¹P-NMR (C₆D₆): δ = 69.9 (d) und 49.5 (d), J(PP) = 11.9 Hz.

C₂₅H₅₀BrNP₂Pd₂ (719.4) Ber. C 41.74 H 7.01 N 1.95 Pd 29.58 Gef. C 41.98 H 7.04 N 2.18 Pd 29.45

Bromo (cyclopentadienyl)- μ -(phenylisocyanid-C)-bis(triisopropylphosphan)dipalladium(1)(Pd-Pd) (7): Ausgehend von 136 mg (0.20 mmol) **2b** und 22 μ l (0.20 mmol) Phenylisocyanid analog wie für **6** beschrieben. Rote Kristalle, Ausb. 117 mg (75%), Zers.-P. 80°C. – IR (KBr): v(CN) 1755 cm⁻¹. – ³¹P-NMR (C₆D₆): δ = 71.3 (d) und 50.7 (d), J(PP) = 10.4 Hz.

C₃₀H₅₂BrNP₂Pd₂ (781.4) Ber. C 46.11 H 6.71 N 1.79 Gef. C 46.61 H 6.92 N 1.61

Bromo (cyclopentadienyl)- μ -(p-tolylisocyanid-C)-bis(triisopropylphosphan)dipalladium(I)(Pd-Pd) (8): Ausgehend von 136 mg (0.20 mmol) **2b** und 29 mg (0.25 mmol) p-Tolylisocyanid analog wie für **6** beschrieben. Ziegelrote Kristalle, Ausb. 94 mg (59%), Zers.-P. 82°C. – IR (KBr): v(CN) 1754 cm⁻¹. – ³¹P-NMR (C₆D₆): δ = 70.8 (d) und 50.0 (d), J(PP) = 11.9 Hz.

```
C<sub>31</sub>H<sub>54</sub>BrNP<sub>2</sub>Pd<sub>2</sub> (795.4) Ber. C 46.81 H 6.84 N 1.76
Gef. C 47.32 H 7.04 N 1.87
```

Chloro(cyclopentadienyl)- μ -(schwefeldioxid-S)-bis(triethylphosphan)dipalladium(I)(Pd-Pd) (9a): Durch eine Lösung von 165 mg (0.30 mmol) 1a in 5 ml Toluol wird bei Raumtemp. 5 min SO₂ geleitet. Die dunkelrote Lösung wird i. Vak. auf ca. 1 ml eingeengt, mit 10 ml Pentan versetzt und auf -30° C gekühlt. Es resultieren rubinrote Kristalle, die aus Toluol/Pentan (1:10) umkristallisiert werden. Ausb. 160 mg (87%), Zers.-P. 76°C. -1 R (KBr): v(SO) 1202 cm⁻¹, 1065, 1030. -3^{1} P-NMR (C₆D₆): $\delta = 41.5$ (d) und 26.5 (d), J(PP) = 6.0 Hz.

Bromo(cyclopentadienyl)- μ -(schwefeldioxid-S)-bis(triethylphosphan)dipalladium(I)(Pd-Pd) (9b): Ausgehend von 178 mg (0.30 mmol) 1b analog wie für 9a beschrieben. Dunkelrot-violette Kristalle, Ausb. 162 mg (82%), Zers.-P. 82°C. – IR (KBr): v(SO)

Tab. 1. ¹H-NMR-Daten der Komplexe 3, 4 und 6-11 in [D₆]Benzol (δ in ppm, TMS int., J in Hz; J(HH) aus ³¹P-entkoppelten Spektren)

Komplex	δ(C ₅ H ₅)	<u>ј</u> (¹ рн)	<u>ј</u> (² рн)	б(¹ РС <u>н</u>)	б(¹ РСН _п С <u>Н</u> ₃)	J(PH)	<u>J</u> (HH)	б(² РС <u>н</u>)	б(² рсн _п с <u>н</u> з)	<u>J</u> (PH)	<u>)</u> (нн)
3 <u>a</u>	5.85(dd)	1.6	1.9	1.65(m)	1.10(td)	17.0	7.0	1.52(m)	0.89(td)	17.2	7.2
<u>3</u> ₽	5.82(dd)	1.6	2.0	1.62(m)	1.08(td)	17.2	6.8	1.50(m)	0.89(td)	17.4	7.4
4⊴	6.01(dd)	1.6	1.7	2.33(m)	1.27(dd)	14.2	7.3	1.73(m)	1.10(dd)	14.4	7.0
<u>4</u> ₽	6.02(dd)	1.5	1.7	2.31(m)	1.27(dd)	14.6	7.4	1.70(m)	1.10(dd)	14.8	7.4
<u>6</u> ^{a)}	6.02(dd)	1.4	2.0	2,60(m)	1.32(dd)	13.8	6.8	1.86(m)	1.02(dd)	15.0	7.2
<u></u> ∠ ^{b)}	6.10(dd)	1.4	1.8	2.68(m)	1.32(dd)	13.8	7.4	1.70(m)	0.96(dd)	14.6	6.0
₿ ^{c)}	6.10(dd)	1.6	1.8	2.66(m)	1.32(dd)	13.8	7.2	1.72(m)	1.00(dd)	14.0	7.0
2₫	5.83(dd)	1.8	2.0	1.68(m)	1.10(td)	16.8	7.2	1.57(m)	0.90(td)	17.2	7.0
<u>95</u>	5.78(dd)	2.1	2.3	1.72(m)	1.13(td)	17.0	7.3	1.62(m)	0.90(td)	17.5	7.5
<u>10</u> d)	6.00(dd)	2.0	2.3	1.85(m)	1.13(td)	17.0	6.9	1.60(m)	0.83(td)	17.0	7.1
<u>11</u> e)	6.20(dd)	2.4	2.6	2.50(m)	1.34(dd)	14.6	8.0	1.76(m)	0.94(dd)	13.6	7.0

a) $\delta(CNCH_3) = 2.94(s)$. b) $\delta(C_6H_5) = 7.06(m)$. c) $\delta(C_6H_4) = 6.98(m)$, $\delta(CH_3) = 2.10(s)$. d) $\delta(CO_2CH_3) = 3.47(s)$ und 3.37(s).

e) $\delta(CO_{2}CH_{3}) = 3.42(s)$ und 3.38(s).

Tab. 2. ¹³C-NMR-Daten (breitbandentkoppelte Spektren) der Komplexe 4a, 6, 9b und 10 in [D₆]Benzol (δ in ppm, TMS int.; J in Hz. ¹P und ²P sind die an ¹Pd bzw. ²Pd gebundenen Phosphoratome)

Komplex	4 <u>a</u> a)	<u></u> € ^{b)}	3Þ	10 c)	
δ(C ₅ H ₅)	98.6(bs)	97.5(dd)	100 .6 (dd)	99.9(dd)	
<u>J</u> (¹ PC)		6.0	6.5	8.2	
<u>J(²PC)</u>		7.4	6.7	11.7	
б(¹ РСН _л)	26.6(d)	25.9(d)	18.9(d)	20.4(d)	
J(¹ PC)	19.8	20.7	27.7	27.7	Zuordnung gemäß:
6(¹ PCH_CH3)	20.0(d)	20.2(d)	8.5(d)	8.9(d)	
J(¹ PC)	5.7	5.7	4.3	3.5	
δ(² PCH _n)	24.1(d)	24.1(d)	17.0(d)	17.9(d)	·Pa Pa
J(² PC)	15.1	16.5	24.8	26.5	
δ(² PCH CH_)	19.9(d)	20.U(d)	8.2(d)	8.4(d)	
<u>J</u> (² PC)	5.3	5.2	4.1	3.3	

a) $\delta(CO) = 223.0(bs)$. b) $\delta(\underline{CNCH}_3) = 196.8$, $\delta(CN\underline{CH}_3) = 42.4$, beide Signale erscheinen als etwas verbreiterte Dubletts mit $\underline{J}(PC)$ ca. 10 bzw. 8 Hz. c) $\delta(^1C) = 135.3(d)$, $\underline{J}(PC) = 16.7$ Hz; $\delta(^2C) = 105.8(d)$, $\underline{J}(PC) \approx 10$ Hz; $\delta(^3C) = 170.0(s)$; $\delta(^4C) = 166.6(s)$; $\delta(^5C) = 51.3(s)$; $\delta(^6C) = 51.2(s)$.

Tab. 3. Ausgewählte Bindungsabstände und -winkel in 4a und 9b (M = Schwerpunkt des Cyclopentadienylrings)

	Bindungsab	stände (Å)			-	Bindungswinkel (°)
441	Pd1 - Pd2	2.675(1)	C24 -	0	1.157(4)	P1 - Pd1 - Pd2	150.3(1)
	Pdl - Pl	2.293(1)	P1 -	C1	1.858(3)	C1 - Pd1 - Pd2	109.8(1)
	Pd1 - C1	2.427(1)	P1 -	C4	1.856(3)	P1 - Pd1 - C1	98.6(1)
	Pd1 - C24	1.899(3)	P1 -	C7	1.857(3)	Pa1 - Pd2 - P2	100.8(1)
	Pd2 - C24	2.082(3)	P2 -	C10	1.854(3)	Pd1 - C24 - Pd2	84.3(1)
	Pd2 - P2	2.275(1)	P2 -	C13	1.861(4)	Pd1 - Pd2 - C24	44.9(1)
	Pd2 - N	2.022	P2 -	C16	1.848(3)	Pd2 - Pd1 - C24	50.8(1)
						P1 - Pd1 - C24	101.0(1)
						Pdl - C24 - O	146.2(2)
						Pd2 - C24 - O	129.4(2)
9þ:	Pdl - Pd2	2.747(2)	s -	01	1.44(2)	P1 - Pd1 - Pd2	149.4(2).
	Pdl - Br	2.478(3)	s -	02	1.48(2)	Br - Pd1 - Pd2	107.3(1)
	Pd1 - P1	2.251(6)	P1 ~	C6	1.80(2)	P1 - Pd1 - Br	102.0(1)
	Pd1 - S	2.156(6)	P1 -	C8	1.81(2)	Pdl - Pd2 - P2	101.7(2)
	Pd2 - S	2.279(6)	P1 -	C10	1.86(2)	Pd1 - S - Pd2	76.5(2)
	Pd2 - P2	2.267(5)	P2 -	C12	1.85(2)	Pd2 - Pd1 - S	53.8(2)
	Pd2 - M	1.966	P2 -	C14	1.83(2)	Pl - Pdl - S	97.2(2)
			P2 -	C16	1.79(2)	01 - S - 02	116.0(1)

1205 cm ¹, 1067, 1030. – ³¹P-NMR (C₆D₆): δ = 40.8 (d) und 26.8 (d), J(PP) = 6.0 Hz.

 $\begin{array}{c} C_{17}H_{35}BrO_2P_2Pd_2S \ (658.2) \\ Ber. \ C \ 31.02 \ H \ 5.36 \ Pd \ 32.33 \ S \ 4.87 \\ Gef. \ C \ 31.20 \ H \ 5.64 \ Pd \ 32.25 \ S \ 4.73 \end{array}$

Die Darstellung von **9b** gelingt auch durch Einleiten von SO_2 in eine Lösung von 62 mg (0.10 mmol) **3b** in 0.5 ml C₆D₆ bei Raumtemp. Ausb. quantitativ (NMR).

Tab. 4. Daten zur Kristallstrukturanalyse von 4a

 $C_{24}H_{47}ClOP_2Pd_2$, a = 9.689(1), b = 15.051(2), c = 20.446(1) Å, $\beta = 97.815(6)^\circ$, V = 2953.8 Å³, $d_{calcd.} = 1.49$ gcm⁻³, Z = 4

Kristallgröße: $0.25 \times 0.61 \times 0.43$ mm; Kristallfarbe: dunkelrot; Strahlung Mo- K_{α} 0.71069 Å, μ (Mo- K_{α}) 14.1 cm⁻¹, Graphit-Monochromator

Raumgruppe P_{2_1}/n , F(000) 1352, keine Absorptionskorrektur, $1.0^\circ \leq \Theta \leq 27.4^\circ$, gemessene Reflexe 7123, unabhängig beobachtete Reflexe 5324 [$I \geq 2\sigma(I)$], Lage der Wasserstoffatome aus Differenz-Fourier-Synthesen, Parameter der Wasserstoffatome in abschlie-Bende Verfeinerung aufgenommen, R 0.026, R_W 0.031, maximale Restelektronendichte 0.76 $e^{A^{-3}}$

Tab. 5. Daten zur Kristallstrukturanalyse von 9b

 $C_{17}H_{35}BrO_2P_2Pd_2S$, a = 8.451(10), b = 9.456(15), c = 15.371(21) Å, $\alpha = 85.89(12)$, $\beta = 85.31(10)$, $\gamma = 84.12(12)^{\circ}$, V = 1215.3 Å³, $d_{calcd.} = 1.80$ gcm⁻³, $d_{exp.} = 1.78$ gcm⁻³, Z = 2

Kristallgröße: $0.28 \times 0.23 \times 0.12$ mm; Kristallfarbe: dunkelrot-violett; Strahlung Mo- K_{α} 0.71069 Å, μ (Mo- K_{α}) 14.1 cm⁻¹, Graphit-Monochromator

Raumgruppe $P\overline{1}$, F(000) 652, empirische Absorptionskorrektur ($\lambda = 9.9 \text{ cm}^{-1}$), $2.5^{\circ} \leq \Theta \leq 22.5^{\circ}$, gemessene Reflexe 3168, unabhängig beobachtete Reflexe 2538 [$I \ge 2.96 \sigma(I)$], Lage der Wasserstoffatome z.T. aus Differenz-Fourier-Synthesen, z.T. nach idealer Geometrie berechnet, R 0.089, $R_{\rm W}$ 0.106, maximale Restelektronendichte 0.06 e^{A} ⁻³

 μ -(Acetylendicarbonsäure-dimethylester)-bromo(cyclopentadienyl)bis(triethylphosphan)dipalladium(1)(Pd-Pd) (10): Eine Suspension von 119 mg (0.20 mmol) 1b in 10 ml Pentan wird bei -78°C tropfenweise mit 26 μ l (0.20 mmol) C₂(CO₂Me)₂ versetzt und 1 h gerührt. Nach Absitzenlassen des Niederschlags wird die überstehende Lösung dekantiert. Der Rückstand wird mit Pentan gewaschen, i. Vak. getrocknet und aus Toluol/Pentan (1:10) umkristallisiert. Rote Kristalle, Ausb. 91 mg (62%), Zers.-P. 84°C. -IR (KBr): v(CO) 1705 cm⁻¹, 1693, v(C=C) 1587. – ³¹P-NMR (C_6D_6) : $\delta = 32.7$ (d) und 31.6 (d), J(PP) = 10.4 Hz.

$$\begin{array}{cccc} C_{23}H_{41}BrO_{4}P_{2}Pd_{2} \ (736.2) & \text{Ber.} \ C \ 37.52 \ H \ 5.61 \\ & \text{Gef.} \ C \ 37.68 \ H \ 5.84 \end{array}$$

Tab. 6. Atomparameter von **4a**.
$$U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* a_i a_j$$

ATOM	X	Ŷ	Z	U
				eq
PD1	0.2096(1)	0,1770(1)	0.3902(1)	0.037
PD2	0.1373(1)	0.0092(1)	0.3591(1)	0.034
CL	0.3795(1)	0.2282(1)	0.3218(1)	0.069
Pl	0.2202(1)	0.2946(1)	0.4619(1)	0.038
P2	-0.0483(1)	0.0314(1)	0.2799(1)	0.038
0	-0.0003(3)	0.0966(2)	0.4623(1)	0.074
Cl	0.0714(3)	0.2982(2)	0.5103(2)	0.054
C2	-0.0677(4)	0.3137(3)	0.4667(2)	0.071
C3	0.0851(5)	0.3562(3)	0.5718(2)	0.087
C4	0.3753(3)	0.2854(2)	0,5257(2)	0.051
C5	0.3687(4)	0.1987(3)	0.5633(2)	0.074
C6	0.5096(4)	0.2911(3)	0.4954(2)	0.072
C7	0.2431(3)	0.4029(2)	0.4213(2)	0.052
C8	0.1289(4)	0.4204(3)	0.3633(2)	0.072
C9	0.2684(5)	0.4827(2)	0.4665(2)	0.086
C10	-0.0210(3)	0.1189(2)	0,2192(1)	0.052
C11	0.1147(4)	0.1035(3)	0.1913(2)	0.078
C12	-0.0234(4)	0.2129(2)	0,2484(2)	0.066
C13	-0.0761(3)	-0.0714(2)	0.2294(2)	0.062
C14	-0.1275(4)	-0.1474(3)	0.2677(3)	0.096
C15	-0.1622(5)	-0.0630(4)	0.1609(2)	0.109
C16	-0.2110(3)	0.0651(2)	0.3110(2)	0.048
C17	-0.3363(3)	0.0811(3)	0.2580(2)	0.070
C18	-0.2499(4)	0.0041(3)	0.3658(2)	0.070
C19	0.2137(5)	-0.1346(3)	0.3923(3)	0.100
C20	0.2551(5)	-0.1188(3)	0.3304(2)	0.082
C21	0.3513(4)	∽ 0.0526(3)	0.3377(2)	0.074
C22	0.3615(4)	-0.0235(3)	0.4009(3)	0.085
C23	0.2773(6)	-0.0756(4)	0.4351(2)	0.098
C24	0.0772(3)	0.1033(2)	0.4243(1)	0.043

Tab. 7. Atomparameter von **9b**. Der anisotrope Temperaturfaktor ist definiert als $T = \exp[-1/4 (h^2 a^* B_{11} + k^2 b^* B_{22} + l^2 c^* B_{33} + 2hk a^* b^* B_{12} + 2hl a^* c^* B_{13} + 2k l b^* c^* B_{23})]; B_{ij}$ in 10⁴ pm²

Atom	x/a	y/b	z/c	Beq	
Pd1	0.5157(2)	0.1910(2)	0.2641(1)	3.9(1)	
Pd2	0.6644(2)	0.3675(1)	0,1407(1)	3.8(3)	
Br	0.7257(3)	0.0216(2)	0.3273(2)	5.2(1)	
5	0.4024(6)	0.3701(5)	0.1901(4)	4.5(3)	
P1	0.2912(7)	0.1007(6)	0.3220(4)	4.5(3)	
P2	0,7176(7)	0.5449(5)	0.2224(4)	4.3(3)	
01	0.3400(16)	0.4896(14)	0,2400(10)	5,9(8)	
02	0.3067(16)	0.3388(15)	0.1189(10)	5.6(8)	
C1	0.685(3)	0.195(2)	0.048(2)	5.8(13)	
C2	0.831(3)	0,170(2)	0.090(1)	5.0(12)	
C3	0.909(2)	0,288(2)	0.072(1)	4.0(10)	
C4	0.819(3)	0.384(2)	0.009(1)	4.6(11)	
C5	0.676(3)	0.328(2)	0.010(1)	6.4(14)	
C6	0.168(2)	0.059(2)	0.239(1)	4.9(11)	
C7	0.250(3)	-0.039(3)	0.170(2)	8.3(17)	
C8	0.164(3)	0.222(2)	0.389(2)	5.7(12)	
C9	0.235(4)	0.272(3)	0.462(2)	8.8(18)	
C10	0.332(3)	-0.068(2)	0.391(2)	6.7(14)	
C11	0.174(3)	-0.129(2)	0.391(2)	8.1(16)	
C12	0.635(3)	2)	0.176(2)	6.3(13)	
C13	0.706(4)	2)	0.085(2)	8.3(16)	
C14	0.635(3)	3)	0.336(1)	6.1(13)	
C15	0.713(4)	0.419(3)	0.396(2)	8.9(18)	
C16	0.928(3)	0.551(2)	0.222(1)	5.3(11)	
C17	0.982(3)	0.668(3)	0.276(2)	7.6(15)	

 μ -(Acetylendicarbonsäure-dimethylester)-bromo(cyclopentadienyl)bis(triisopropylphosphan)dipalladium(1)(Pd-Pd) (11): Ausgehend von 136 mg (0.20 mmol) 2b und 26 µl (0.20 mmol) C₂(CO₂Me)₂ analog wie für 10 beschrieben. Rotbraune Kristalle, Ausb. 82 mg (50%), Zers.-P. 108 °C. - IR (KBr): v(CO) 1705 cm⁻¹, 1681, v(C=C) 1574. $-{}^{31}$ P-NMR (C₆D₆): $\delta = 61.5$ (d) und 57.4 (d), J(PP) = 4.5 Hz.

C₂₉H₅₃BrO₄P₂Pd₂ (820.4) Ber. C 42.46 H 6.51 Pd 25.94 Gef. C 42.21 H 6.64 Pd 25.80

Röntgenstrukturanalysen von 4a und 9b: Die Angaben zur Durchführung sind in Tab. 4 und 5, die Bindungsabstände und -winkel in Tab. 3, die Atomparameter in Tab. 6 und 7 zusammengefaßt. Weitere Einzelheiten können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 51354, der Autoren und des Zeitschriftenzitats angefordert werden.

CAS-Registry-Nummern

1a: 86422-53-9 / 1b: 106193-52-6 / 2a: 57363-40-3 / 2b: 57622-82-9 / 3a: 102697-59-6 / 3b: 96445-59-9 / 4a: 106193-48-0 / 4b: 96445-60-2 / 5: 83044-05-7 / 6: 96453-14-4 / 7: 106211-18-1 / 8: 106193-49-1 / 9a: 106211-19-2 / 9b: 96453-15-5 / 10: 106193-50-4 / 11: 106193-51-5 / CO: 630-08-0 / CH_3NC : 593-75-9 / C_6H_5NC : 931-54-4 / p- $CH_3C_6H_4NC$: 7175-47-5 / SO_2 : 7446-09-5 / $C_2(CO_2Me)_2$: 762-42-5 / Pd: 7440-05-3

- ¹⁾ Übersicht: H. Werner, Adv. Organomet. Chem. 19 (1981) 155.
- $^{(2)}$ $^$ (1982) 707; Angew. Chem. Int. Ed. Engl. 21 (1982) 692. – ^{2c)} H. Werner, P. Thometzek, C. Krüger, H.-J. Kraus, Chem. Ber. 119 (1986) 2777.
- ³⁾ ³⁴⁾ P. Thometzek, H. Werner, J. Organomet. Chem. **252** (1983) C 29. ³⁶⁾ P. Thometzek, H. Werner, Organometallics, im Druck.
- ⁴⁾ P. Thometzek, K. Zenkert, H. Werner, Angew. Chem. 97 (1985)
- ⁵¹ Sai R. Colton, M. J. McCormick, C. D. Pannan, J. Chem. Soc., Chem. Commun. 1977, 823. ⁵⁰ R. Colton, M. J. McCormick, D. Pannan, Aust. J. Chem. 31 (1978) 1425.
- C. D. Pannan, Aust. J. Chem. 31 (1978) 1425.
 ⁶⁾ ^{6a)} M. M. Olmstead, H. Hope, L. S. Benner, A. L. Balch, J. Am. Chem. Soc. 99 (1977) 5502. ^{6b)} L. S. Benner, A. L. Balch, J. Am. Chem. Soc. 100 (1978) 6099. ^{6c)} A. L. Balch, C. T. Hunt, C.-L. Lee, M. M. Olmstead, J. P. Farr, J. Am. Chem. Soc. 103
- (1981) 3764.
 ^{7) 7a)} M. L. Kullberg, C. P. Kubiak, *Organometallics* 3 (1984) 632. ^{7b)} M. L. Kullberg, C. P. Kubiak, *Inorg. Chem.* 25 (1986) 26.
- ⁸⁾ Siehe einen kürzlich erschienenen Übersichtsartikel: R. J. Puddephatt, Chem. Soc. Rev. 12 (1983) 99.
- ⁹⁾ R. Bender, P. Braunstein, A. Tiripiccho, M. Tiripiccho-Camellini, J. Chem. Soc., Chem. Commun. **1984**, 42
- ¹⁰ R. D. Feltham, G. Elbaze, R. Ortega, C. Eck, J. Dubrawski, Inorg. Chem. 24 (1985) 1503.
- ¹¹⁾ J. Powell, N. I. Dowling, Organometallics 2 (1983) 1742.
- ¹²⁾ P. L. Goggin, R. J. Goodfellow, I. R. Herbert, A. G. Orpen, J.
- Chem. Soc., Chem. Commun. 1981, 1077. ¹³⁾ P. Dagnac, R. Turpin, R. Poilblanc, J. Organomet. Chem. 253
- (1983) 123. ¹⁴⁾ H. Werner, H.-J. Kraus, U. Schubert, K. Ackermann, Chem. Ber. 15 (1982) 2905.
- C. Sekutowski, Chem. Ber. 110 (1977) 1763. -Werner, J. Organomet. Chem. 179 (1979) 421.
- ¹⁶ H. Werner, A. Kühn, Ch. Burschka, Chem. Ber. 113 (1980) 2291. ¹⁷ H. Werner, H.-J. Kraus, U. Schubert, K. Ackermann, P. Hof-
- mann, J. Organomet. Chem. 250 (1983) 517
- ¹⁸⁾ R. J. Cross, R. Wardle, J. Chem. Soc. A 1971, 2000.
- ¹⁹⁾ A. L. Balch, L. S. Benner, M. M. Olmstead, Inorg. Chem. 18 (1979) 2996
- ²⁰⁾ C.-L. Lee, C. T. Hunt, A. L. Balch, Inorg. Chem. 20 (1981) 2498.

- F. A. Cotton, G. Wilkinson, Anorganische Chemie, 4. Auflage, Kap. 27.10, Verlag Chemie, Weinheim 1982.
 D. M. Hoffman, R. Hoffmann, C. R. Fisel, J. Am. Chem. Soc.
- 104 (1982) 3858.
- ²³⁾ H. Werner, H.-J. Kraus, *Chem. Ber.* 113 (1980) 1072.
 ²⁴⁾ W. A. Herrmann, J. Plank, M. L. Ziegler, P. Wulknitz, *Chem.* Ber. 114 (1981) 716.
- ²⁵⁾ F. Faraone, G. Bruno, S. L. Schiavo, G. Bombieri, J. Chem. Soc., Dalton Trans. 1984, 533.
- ²⁶⁾ C. E. Briant, D. G. Evans, D. M. P. Mingos, J. Chem. Soc., Chem. C. E. Brian, E. S. Z. M., P. S. Commun. 1982, 1144. ^{27) 27a} R. Colton, M. J. McCormick, *Coord. Chem. Rev.* 31 (1980) 1. -^{27b} F. A. Cotton, *Progr. Inorg. Chem.* 21 (1976) 1.

- ²⁸⁾ R. J. Goodfellow, I. R. Herbert, A. G. Orpen, J. Chem. Soc.,
- ²⁹⁾ ²⁹ⁿ D. G. Evans, G. R. Hughes, D. M. P. Mingos, J. M. Basset, A. J. Welch, J. Chem. Soc., Chem. Commun. 1980, 1255. ^{29b} M. F. Hallam, N. D. Howells, D. M. P. Mingos, R. W. M. Wardle, J. Chem. Soc., Dalton Trans. 1985, 845.
- ³⁰⁾ Für Pd-Komplexe mit SO₂-Brückenliganden siehe Lit.¹⁹⁾ und D. C. Moody, R. R. Ryan, Inorg. Chem. 16 (1977) 1052. ³¹⁾ A. Kühn, Ch. Burschka, H. Werner, Organometallics 1 (1982)
- 496.
- ³²⁾ H. Felkin, G. K. Turner, J. Organomet. Chem. 129 (1977) 429.

[236/86]